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Abstract
Recently, attention has been given to modified gravity models, as they may
represent alternatives to quintessence models for an explanation to today’s
acceleration of the universe. We review the main results developed in De Felice,
Hindmarsh and Trodden (2006 J. Cosmol. Astropart. Phys. JCAP08(2006)005
(Preprint astro-ph/0604154)) and Calcagni, de Carlos and De Felice (2006
Nucl. Phys. B (Preprint hep-th/0604201)), where we showed that those theories
that involve a coupling between a scalar field with the Gauss–Bonnet curvature
combination, in general possess both ghosts degrees of freedom and classical
instabilities. We believe these constraints put severe bounds on these types
of modifications of gravity. We add a critical assessment of the present
understanding of these bounds.

PACS numbers: 04.50.+h, 04.20.−q, 98.80.Jk, 95.35.+d

1. Introduction

According to the principles of general relativity (GR), the equations of motion for gravity
should not include third or higher order derivatives in the metric, and they should be linear
in the second derivatives of the metric elements. In four dimensions, the most general
Lagrangian that satisfies these requirements is the Einstein–Hilbert action with the addition of
a cosmological constant. This simple model, after adding both radiation and dark matter, can
actually fit today’s data. The only problem related to this classical picture is that the value of
the cosmological constant, in this approach, is not predicted. In fact, the value necessary to fit
today’s data is well below the value that particle physics can predict.

As there are no satisfactory models at the moment that explain the tiny value of the
cosmological constant, the attention has been shifted from solving the cosmological constant
problem itself to finding a dynamical model, which can explain today’s acceleration and the
coincidence problem. In this sense, probably the quintessence models have been the most
promising ones [1, 2]. However, because gravity is the least known among forces, some
have argued that, since the acceleration of the universe at large scales may be interpreted as
a deviation from standard GR, we need a search running for sensible modifications of the
Einstein–Hilbert action. In fact, some of these new proposals required the introduction of
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extra dimensions [3], others instead, used general functions of the Ricci scalar [4]. These last
ones, in particular, proved to be equivalent to a scalar–tensor theory [5]. In the CDDETT paper
[6], the authors introduced a Lagrangian made of powers of curvature invariants of second
order. This model will be the one discussed in this paper.

The paper is divided as follows. In section 2, the CDDETT model is shortly reviewed.
The theoretical bounds about instabilities for these models are discussed in section 3. Finally,
section 4 is devoted to the conclusions.

2. The actions considered

The action we study here is the one introduced in the CDDETT paper [6]. It can be written as
follows:

S =
∫

d4x
√−g

[
1

2
R − θµ

µ4n+2

(a1R2 + a2RαβRαβ + a3Rαβγ δRαβγ δ)n

]
, (1)

where θµ = ±1, µ is a parameter with dimensions of mass, ai are real numbers and n is
an integer. Even though this Lagrangian has many free parameters, it was soon realized that
if a2 �= −4a3, a spin-2 ghost would be present. Essentially, this is related to the fact that
the equations of motion for the metric become of fourth order. Therefore, there was some
excitement thinking that choosing a2 = −4a3 would heal this class of Lagrangians from the
presence of ghosts degrees of freedom. In this and in the remaining sections we will show that
this is not the case: even though there are no more spin-2 ghosts, other degrees of freedom,
both the scalar and tensor modes, may still become ghosts and unstable.

Choosing then a2 = −4a3 and a3 �= 0 (otherwise the theory would become an f (R)

scalar–tensor theory), the previous action can be rewritten as follows:

S =
∫

d4x
√−g

[
1

2
R − θµ

an
3

µ4n+2(
bR2 + R2

GB

)n

]
, (2)

where b ≡ a1/a3 − 1 and R2
GB ≡ R2 − 4RαβRαβ + Rαβγ δR

αβγ δ is the Gauss–Bonnet (GB)
combination. In order to understand clearly the physical degrees of freedom, it is helpful to
rewrite the previous Lagrangian in the following equivalent form:

S =
∫

d4x
√−g

{
1

2
[1 + 4bσf (φ)]R − U(φ) − bσ 2f (φ) + f (φ)R2

GB

}
, (3)

where

U(φ) = θµµ4n+2 n + 1

φn
(4)

f (φ) = a3θµµ4n+2 n

φn+1
. (5)

Therefore, it is clear that in this model there are two scalar fields of which one is non minimally
coupled with R and the other with R2

GB. This second coupling differentiates these models from
scalar–tensor theories. In fact, in this case, a conformal transformation does not lead to an
Einstein frame where, by definition, the scalars are minimally coupled with gravity. As we
shall see later on, all the instabilities come from the coupling between φ and the Gauss–
Bonnet combination. As the field φ in general is dynamical, the Gauss–Bonnet term does give
a contribution to the 4D equations of motion. It is interesting to note that the equations of
motion for all the fields are of second order. In fact, by calling χ = 2bσf , they can be written
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as follows:

σ = R, (6)

φ = a3
(
bR2 + R2

GB

)
, (7)(

1

2
+ χ

)
Rαβ − ∇α∇βχ + gαβ � χ − 2R∇α∇βf + 2gαβR � f + 8R(αν∇β)∇νf

− 4Rαβ � f − 4gαβRρσ ∇ρ∇σ f − 4R(α
στ

β)∇σ∇τ f

− 1

2
gαβ

[(
1

2
+ χ

)
R − χ2

4bf
− U

]
= 0, (8)

and the first two equations (found by varying the action with respect to σ and φ respectively)
are second-order differential equations in the metric elements, whereas, from the third equation
(found by varying the action with respect to the metric elements gµν), it is clear that both the
scalar fields are dynamical.

Therefore, these models have something in common with the Gauss–Bonnet cosmological
models, whose action is written in terms of a single scalar field, which has a canonical kinetic
term, and a coupling with the Gauss–Bonnet combination. More details about the study of
ghosts and instabilities in the GB cosmological models can be found in [7].

3. Cosmological perturbations

When the CDDETT models were first introduced, the de Sitter solution was immediately
found. However, the de Sitter background is unstable in these theories. Nevertheless, attractor
solutions do exist and they are power-law solutions. Since there is a large parameter space
that predicts accelerating power-law solutions, these models were proposed as alternatives to
quintessence. After the first proposal of this model there were many studies of the instabilities
and ghosts, but they were made assuming a de Sitter background [8–10]. The fact that this
background is unstable suggests, in fact, that the instability/ghost analysis should be made
first on the attractor power-law solutions. Furthermore, the fact that these instabilities need to
be absent also in the past history of the universe suggests that this analysis should be actually
done on a general FRW background.

Therefore, we will expand the action at second order in the fields about a general FRW
background. We will consider then scalar, vector and tensor perturbations for the metric. After
having chosen a background and broken Lorentz invariance, even though the field equations
are still of second order, a field can indeed show an unstable behaviour. In particular, if we
have a field for which the action is as follows:

S =
∫

d4x
√−g

[
1

2
T (t)φ̇2 − 1

2
S(t)∇φ2

]
, (9)

then the speed of propagation for this mode is v = √
S/T . If S/T is negative then the speed

of propagation becomes imaginary, and instabilities grow and the system becomes unstable.
If S/T > 1 then there are superluminally propagating modes. Finally, if T < 0 we have
a ghost degree of freedom, which, interacting with other fields, makes quantum field theory
inconsistent.

As an example, considering the simple case b = 0, and only the tensor modes of the
metric, Hi

j , which are transverse and traceless, it can be shown that expanding the action at
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second order in these fields one finds

δ2
gS

T
(2) =

∫
d4x

√−g

[
1

2
Hij

(
1

2
+

4

a2
(f ′′ − Hf ′)

)
�Hij +

1

2
Hij

(
1

2
+

4

a2
Hf ′

)
∇0∇0Hij

]
,

(10)

where a prime denotes differentiation with respect to the proper time η defined as dt =
a dη,H ≡ a′/a, and a is the scale factor for the FRW metric. Now it is clear that, since φ and
f (φ) are constants on a de Sitter background, de Sitter is ghosts free. However, for a general
FRW background this is not always the case. Furthermore, it is clear that the coupling that
leads to this unstable behaviour is the coupling with the Gauss–Bonnet term, not the one with
the Ricci scalar. Rewriting the factors in front of the second-order differential operators, one
finds that

T (t) = 1 + 8Hḟ (11)
S(t) = 1 + 8f̈ . (12)

The dynamics of φ (and consequently of f (φ)) are not trivial, therefore, in order to know the
behaviour of both S and T, one needs to solve the differential equations for the background.

For the general case b �= 0 and the tensor modes, one can show that the following stability
conditions need to be satisfied (see [11] for more details):

1 + 4bfR + 8Hḟ > 0, (13)

0 < c2
2 = 1 + 4bf R + 8f̈

1 + 4bf R + 8Hḟ
� 1. (14)

In the case b �= 0 both the Bardeen scalars propagate. The ghost condition for the scalar
modes is equivalent to the previous ghost condition for the tensor modes, however from the
expression of their speed, these extra two constraints can be written

0 < c2
0 = 1 +

32

3Q1
ḟḢ − 8

3Q2
(f̈ − ḟH) � 1, (15)

where

Q1 = 4b(ḟR + fṘ) + 8ḟH 2 and Q2 = 1 + 4bfR + 8Hḟ . (16)

In total one has five independent conditions for the background in order not to have instabilities,
ghosts, and superluminal modes. A complete study of these conditions at all times is still a
work in progress, but it is instructive to consider them to constrain the parameter space of the
accelerating power-law solutions. The accelerating power-law attractors, for which a(t) ∝ tp,
have exponent

p = 2(n + 1)(4n + 1) − 3α +
√

9n2α2 − 4(n + 1)(4n + 1)(5n + 1)α + 4(4n + 1)2(n + 1)2

4(n + 1)
,

(17)

where α ≡ 6b/(6b + 1).
A plot of the allowed values of α and n, after imposing the no-ghost constraints, is shown

in figure 1.
It is important to note that the accelerating power-law solutions are attractors for the

modified Friedmann equation. On the other hand, a large part of the parameter space of these
attractors is excluded as the background becomes unstable because of the ghost propagating
modes. Therefore, there is a clear difference between stability in the phase–space and stability
of the metric perturbation modes, in particular the first one does not imply the second.
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Figure 1. Contour plot in the (α, n) plane for the constraints. The light grey area corresponds to the
region in which only the no-ghost constraint holds. The darker area represents the points at which
both the no-ghost and the positive-squared-velocity conditions hold at the same time. Finally, the
darkest region is the region of the plane at which all the constraints (no-ghost, 0 < c2 < 1) hold
for both scalar and tensor modes.

4. Discussion

In classical mechanics, for a ghost on which only a conservative force acts, it is possible to
write down the Lagrangian in the form L = −T −U , where T = 1

2m�v2. Therefore, a potential
which would be stable for a non-ghost object is actually unstable for a ghost and vice versa.
If one assumes to name V a normal-particle stable potential, then the equations of motion for
a ghost coming from the Lagrangian Lghost = −T + V are identical of those for a standard
particle. However, if T = 1

2mq̇2 and V = V (q), then the Hamiltonian (i.e. the total energy in
this case) would be of opposite sign, as H = −p2/(2m)−V , where p = −mq̇. Therefore, in
classical mechanics a ghost would be in general a particle with negative mechanical energy.
If one considers a mechanical interaction between a ghost object and a normal one, then
instabilities may actually arise. For example, for two harmonic oscillators, of which one is
ghost-like, as in L = − 1

2 q̇2
1 + 1

2k1q
2
1 + 1

2 q̇2
2 − 1

2k2q
2
2 +λq1q2, one finds that if λ2 > (k1 −k2)

2/4
(which is always true if k1 = k2), then the variables qi grow up exponentially. Otherwise, the
orbits would be bound in a finite region of space.

In non-relativistic quantum mechanics, a ghost with Hamiltonian Ĥ = −p̂2
1

/
2m −

1
2mω2q̂2

1 would have a negative spectrum En1 = −h̄ω
(
n1 + 1

2

)
. If we couple this ghost-like

harmonic oscillator with a normal oscillator with the same mass and frequency through a time-
dependent interaction, as in Vint = λθ(T 2 − t2)q1q2 (where θ(x) is the Heaviside function),
then the energy of the bound states at t → ±∞ is given by E1,2 = h̄ω(n2−n1). It can be shown
that the state, (n1 = 0, n2 = 0) is indeed unstable. In fact, as far as first-order perturbation
theory holds, after a time 2T , the system decays into the isoenergetic state (n1 = 1, n2 = 1)

with a probability P = (λT /mω)2. In this case, the total energy of the system would not
change but the ghost oscillator would give more and more energy to the normal oscillator. In
fact, being the system initially in the state (n1 = 1, n2 = 1) and switching on again the same
perturbation, the probability for the system to go to the isoenergetic state (n1 = 2, n2 = 2) is
four times larger than the probability P to go to the other isoenergetic state (n1 = 0, n2 = 0).

In quantum field theory, if one chooses the propagator for a ghost particle in order not to
violate the optical theorem, then the Feynman–Green function will propagate (forward in time)
ghost particles with negative energy. This is tantamount to saying that ghosts possess negative
energy, in agreement with the results of both classical and quantum mechanics. However, in
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this case, it is possible that the vacuum is not stable; for example out of vacuum it could be
possible to create ghosts and normal particles, as relativistic kinematics allows this process to
happen. This case has been discussed in detail in [12, 13], and we refer the reader to these
works. Because the vacuum is unstable, the result is that ghost theories need a cut-off (which
explicitly breaks Lorentz invariance) of order of a few MeV.

If it is clear that an imaginary speed of propagation for a particle gives a classical instability,
for superluminal modes, things are not as easy. In fact, there have been some discussions
if such modes might create problems of causality violations [14] and inconsistencies in the
theory of black-hole thermodynamics [15, 16]. However, it is actually in the models studied in
this paper, where it is clear that they in general lead to an ill-defined Cauchy problem. In fact,
the speed of these modes not only is greater than 1, but actually in most of the cases it blows up
at some instant of time at which no metric singularity appears. In other words, the dynamics
of the background does not prevent these metric-perturbation modes from reaching an infinite
speed. Therefore, if a mode reaches a positive-infinite squared-speed then, at that instant,
the spatial section becomes in general causally connected. This gives rise to an ill-posed
Cauchy problem and, in the end, to a classical instability as the squared-speed, immediately
afterwards, acquires infinite negative values.

In this paper, we have reviewed the state of the art for some models of modified gravity
and we have argued these models suffer from severe theoretical constraints, as they predict
the existence of ghost-like, superluminal, and classically unstable modes on cosmological
backgrounds.
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